Java Module Configuration
This page goes into more detail about the various configuration options
for JavaModule
.
Many of the APIs covered here are listed in the API documentation:
Common Configuration Overrides
This example shows some of the common tasks you may want to override on a
{language}Module
: specifying the mainClass
, adding additional
sources/resources, generating resources, and setting compilation/run
options.
package build
import mill._, javalib._
object `package` extends RootModule with JavaModule {
// You can have arbitrary numbers of third-party dependencies
def ivyDeps = Agg(
ivy"org.apache.commons:commons-text:1.12.0"
)
// Choose a main class to use for `.run` if there are multiple present
def mainClass: T[Option[String]] = Some("foo.Foo2")
// Add (or replace) source folders for the module to use
def sources = Task.Sources{
super.sources() ++ Seq(PathRef(millSourcePath / "custom-src"))
}
// Add (or replace) resource folders for the module to use
def resources = Task.Sources{
super.resources() ++ Seq(PathRef(millSourcePath / "custom-resources"))
}
// Generate sources at build time
def generatedSources: T[Seq[PathRef]] = Task {
for(name <- Seq("A", "B", "C")) os.write(
Task.dest / s"Foo$name.java",
s"""
package foo;
public class Foo$name {
public static String value = "hello $name";
}
""".stripMargin
)
Seq(PathRef(Task.dest))
}
// Pass additional JVM flags when `.run` is called or in the executable
// generated by `.assembly`
def forkArgs: T[Seq[String]] = Seq("-Dmy.custom.property=my-prop-value")
// Pass additional environmental variables when `.run` is called. Note that
// this does not apply to running externally via `.assembly
def forkEnv: T[Map[String, String]] = Map("MY_CUSTOM_ENV" -> "my-env-value")
}
If you want to better understand how the various upstream tasks feed into
a task of interest, such as run
, you can visualize their relationships via
> mill visualizePlan run
(right-click open in new tab to see full sized)
Note the use of millSourcePath
, Task.dest
, and PathRef
when preforming
various filesystem operations:
-
millSourcePath
refers to the base path of the module. For the root module, this is the root of the repo, and for inner modules it would be the module path e.g. for modulefoo.bar.qux
themillSourcePath
would befoo/bar/qux
. This can also be overriden if necessary -
Task.dest
refers to the destination folder for a task in theout/
folder. This is unique to each task, and can act as both a scratch space for temporary computations as well as a place to put "output" files, without worrying about filesystem conflicts with other tasks -
PathRef
is a way to return the contents of a file or folder, rather than just its path as a string. This ensures that downstream tasks properly invalidate when the contents changes even when the path stays the same
> mill run
Foo2.value: <h1>hello2</h1>
Foo.value: <h1>hello</h1>
FooA.value: hello A
FooB.value: hello B
FooC.value: hello C
MyResource: My Resource Contents
MyOtherResource: My Other Resource Contents
my.custom.property: my-prop-value
MY_CUSTOM_ENV: my-env-value
> mill show assembly
".../out/assembly.dest/out.jar"
> ./out/assembly.dest/out.jar # mac/linux
Foo2.value: <h1>hello2</h1>
Foo.value: <h1>hello</h1>
FooA.value: hello A
FooB.value: hello B
FooC.value: hello C
MyResource: My Resource Contents
MyOtherResource: My Other Resource Contents
my.custom.property: my-prop-value
Custom Tasks
This example shows how to define task that depend on other tasks:
-
For
generatedSources
, we override an the task and make it depend directly onivyDeps
to generate its source files. In this example, to include the list of dependencies as tuples within a staticobject
-
For
lineCount
, we define a brand new task that depends onsources
, and then overrideforkArgs
to use it. That lets us access the line count at runtime usingsys.props
and print it when the program runs
package build
import mill._, javalib._
object `package` extends RootModule with JavaModule {
def ivyDeps = Agg(ivy"net.sourceforge.argparse4j:argparse4j:0.9.0")
def generatedSources: T[Seq[PathRef]] = Task {
val prettyIvyDeps = for(ivyDep <- ivyDeps()) yield {
val org = ivyDep.dep.module.organization.value
val name = ivyDep.dep.module.name.value
val version = ivyDep.dep.version
s""" "$org:$name:$version" """
}
val ivyDepsString = prettyIvyDeps.mkString(" + \"\\n\" + \n")
os.write(
Task.dest / s"MyDeps.java",
s"""
package foo;
public class MyDeps {
public static String value =
$ivyDepsString;
}
""".stripMargin
)
Seq(PathRef(Task.dest))
}
def lineCount: T[Int] = Task {
sources()
.flatMap(pathRef => os.walk(pathRef.path))
.filter(_.ext == "java")
.map(os.read.lines(_).size)
.sum
}
def forkArgs: T[Seq[String]] = Seq(s"-Dmy.line.count=${lineCount()}")
def printLineCount() = Task.Command { println(lineCount()) }
}
The above build defines the customizations to the Mill task graph shown below, with the boxes representing tasks defined or overriden above and the un-boxed labels representing existing Mill tasks:
Mill lets you define new cached Tasks using the Task {…}
syntax,
depending on existing Tasks e.g. foo.sources
via the foo.sources()
syntax to extract their current value, as shown in lineCount
above. The
return-type of a Task has to be JSON-serializable (using
uPickle, one of Mill’s [Bundled Libraries])
and the Task is cached when first run until its inputs change (in this case, if
someone edits the foo.sources
files which live in foo/src
. Cached Tasks
cannot take parameters.
Note that depending on a task requires use of parentheses after the task
name, e.g. ivyDeps()
, sources()
and lineCount()
. This converts the
task of type T[V]
into a value of type V
you can make use in your task
implementation.
This example can be run as follows:
> mill run --text hello
text: hello
MyDeps.value: net.sourceforge.argparse4j:argparse4j:0.9.0
my.line.count: 24
> mill show lineCount
24
> mill printLineCount
24
Custom tasks can contain arbitrary code. Whether you want to
download files using requests.get
, shell-out to Webpack
to compile some Javascript, generate sources to feed into a compiler, or
create some custom jar/zip assembly with the files you want , all of these
can simply be custom tasks with your code running in the Task {…}
block.
You can create arbitrarily long chains of dependent tasks, and Mill will
handle the re-evaluation and caching of the tasks' output for you.
Mill also provides you a Task.dest
folder for you to use as scratch space or
to store files you want to return: all files a task creates should live
within Task.dest
, and any files you want to modify should be copied into
Task.dest
before being modified. That ensures that the files belonging to a
particular task all live in one place, avoiding file-name conflicts and
letting Mill automatically invalidate the files when the task’s inputs
change.
Overriding Tasks
package build
import mill._, javalib._
object foo extends JavaModule {
def sources = Task {
os.write(
Task.dest / "Foo.java",
"""package foo;
public class Foo {
public static void main(String[] args) {
System.out.println("Hello World");
}
}
""".stripMargin
)
Seq(PathRef(Task.dest))
}
def compile = Task {
println("Compiling...")
super.compile()
}
def run(args: Task[Args] = Task.Anon(Args())) = Task.Command {
println("Running..." + args().value.mkString(" "))
super.run(args)()
}
}
You can re-define tasks to override them, and use super
if you
want to refer to the originally defined task. The above example shows how to
override compile
and run
to add additional logging messages, and we
override sources
which was Task.Sources
for the src/
folder with a plain
T{…}
task that generates the necessary source files on-the-fly.
Note that this example replaces your src/
folder with the generated
sources. If you want to add generated sources, you can either override
generatedSources
, or you can override sources
and use super
to
include the original source folder:
object foo2 extends JavaModule {
def generatedSources = Task {
os.write(Task.dest / "Foo.java", """...""")
Seq(PathRef(Task.dest))
}
}
object foo3 extends JavaModule {
def sources = Task {
os.write(Task.dest / "Foo.java", """...""")
super.sources() ++ Seq(PathRef(Task.dest))
}
}
In Mill builds the override
keyword is optional.
> mill foo.run
Compiling...
Running...
Hello World
Compilation & Execution Flags
package build
import mill._, javalib._
object `package` extends RootModule with JavaModule{
def forkArgs = Seq("-Xmx4g", "-Dmy.jvm.property=hello")
def forkEnv = Map("MY_ENV_VAR" -> "WORLD")
def javacOptions = Seq("-deprecation")
}
You can pass flags to the Kotlin compiler via javacOptions
.
> ./mill compile
.../src/foo/Foo.java:...: stop() in java.lang.Thread has been deprecated
> ./mill run
hello WORLD
By default,
run
runs the compiled code in a subprocess, and you can pass in JVM flags
via forkArgs
or environment-variables via forkEnv
.
You can also run your code via
mill foo.runLocal
Which runs it in-process within an isolated classloader. This may be faster
since you avoid the JVM startup, but does not support forkArgs
or forkEnv
.
If you want to pass main-method arguments to run
or runLocal
, simply pass
them after the foo.run
/foo.runLocal
:
mill foo.run arg1 arg2 arg3
mill foo.runLocal arg1 arg2 arg3
Classpath and Filesystem Resources
package build
import mill._, javalib._
object foo extends JavaModule {
object test extends JavaTests with TestModule.Junit4 {
def otherFiles = Task.Source(millSourcePath / "other-files")
def forkEnv = super.forkEnv() ++ Map(
"OTHER_FILES_DIR" -> otherFiles().path.toString
)
}
}
> ./mill foo.test
... foo.FooTests...simple ...
...
This section discusses how tests can depend on resources locally on disk.
Mill provides two ways to do this: via the JVM classpath resources, and via
the resource folder which is made available as the environment variable
MILL_TEST_RESOURCE_DIR
;
-
The classpath resources are useful when you want to fetch individual files, and are bundled with the application by the
.assembly
step when constructing an assembly jar for deployment. But they do not allow you to list folders or perform other filesystem operations. -
The resource folder, available via
MILL_TEST_RESOURCE_DIR
, gives you access to the folder path of the resources on disk. This is useful in allowing you to list and otherwise manipulate the filesystem, which you cannot do with classpath resources. However, theMILL_TEST_RESOURCE_DIR
only exists when running tests using Mill, and is not available when executing applications packaged for deployment via.assembly
-
Apart from
resources/
, you can provide additional folders to your test suite by defining aTask.Source
(otherFiles
above) and passing it toforkEnv
. This provide the folder path as an environment variable that the test can make use of
Example application code demonstrating the techniques above can be seen below:
Test Hello World Resource File A
Test Hello World Resource File B
Other Hello World File
package foo;
import java.io.IOException;
import java.io.InputStream;
public class Foo {
// Read `file.txt` from classpath
public static String classpathResourceText() throws IOException {
// Get the resource as an InputStream
try (InputStream inputStream = Foo.class.getClassLoader().getResourceAsStream("file.txt")) {
return new String(inputStream.readAllBytes());
}
}
}
package foo;
import org.junit.Test;
import static org.junit.Assert.*;
import java.io.InputStream;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.nio.file.Path;
import java.util.List;
import java.util.ArrayList;
public class FooTests {
@Test
public void simple() throws IOException {
// Reference app module's `Foo` class which reads `file.txt` from classpath
String appClasspathResourceText = Foo.classpathResourceText();
assertEquals("Hello World Resource File", appClasspathResourceText);
// Read `test-file-a.txt` from classpath
String testClasspathResourceText;
try (InputStream inputStream = Foo.class.getClassLoader().getResourceAsStream("test-file-a.txt")) {
testClasspathResourceText = new String(inputStream.readAllBytes());
}
assertEquals("Test Hello World Resource File A", testClasspathResourceText);
// Use `MILL_TEST_RESOURCE_DIR` to read `test-file-b.txt` from filesystem
Path testFileResourceDir = Paths.get(System.getenv("MILL_TEST_RESOURCE_DIR"));
String testFileResourceText = Files.readString(
testFileResourceDir.resolve("test-file-b.txt")
);
assertEquals("Test Hello World Resource File B", testFileResourceText);
// Use `MILL_TEST_RESOURCE_DIR` to list files available in resource folder
List<Path> actualFiles = new ArrayList<>(Files.list(testFileResourceDir).toList());
actualFiles.sort(Path::compareTo);
List<Path> expectedFiles = List.of(
testFileResourceDir.resolve("test-file-a.txt"),
testFileResourceDir.resolve("test-file-b.txt")
);
assertEquals(expectedFiles, actualFiles);
// Use the `OTHER_FILES_DIR` configured in your build to access the
// files in `foo/test/other-files/`.
String otherFileText = Files.readString(
Paths.get(System.getenv("OTHER_FILES_DIR"), "other-file.txt")
);
assertEquals("Other Hello World File", otherFileText);
}
}
Note that tests require that you pass in any files that they depend on explicitly. This is necessary so that Mill knows when a test needs to be re-run and when a previous result can be cached. This also ensures that tests reading and writing to the current working directory do not accidentally interfere with each others files, especially when running in parallel.
The test process runs in a sandbox/
folder, not in your project root folder, to
prevent you from accidentally accessing files without explicitly passing them. If
you have legacy tests that need to run in the project root folder to work, you
can configure your test suite with def testSandboxWorkingDir = false
to disable
the sandbox and make the tests run in the project root.
Annotation Processors
package build
import mill._, javalib._
import java.io.File
object foo extends JavaModule {
def compileIvyDeps = Agg(ivy"org.projectlombok:lombok:1.18.34")
object test extends JavaTests with TestModule.Junit4
}
This is an example of how to use Mill to build Java projects using Java annotations and annotation processors. In this case, we use the annotations provided by Project Lombok to automatically generate getters and setters from class private fields
> ./mill foo.test
Test foo.HelloWorldTest.testSimple started
Test foo.HelloWorldTest.testSimple finished...
...
The Java compiler automatically discovers annotation processors based on the
classes available during compilation, e.g. on compileIvyDeps
or ivyDeps
,
which is what takes place in the example above.
In some cases, you may need
to pass in the annotation processors manually, e.g. if you need annotation
processors that are not on the compilation classpath, or you need finer control
over exactly which annotation processors are active. To do this, you can define
a module to contain the exact annotation processors you want, and pass
in -processorpath
to javacOptions
explicitly:
object bar extends JavaModule {
def compileIvyDeps = Agg(ivy"org.projectlombok:lombok:1.18.34")
def processors = Task {
defaultResolver().resolveDeps(Agg(ivy"org.projectlombok:lombok:1.18.34"))
}
def javacOptions = Seq(
"-processorpath",
processors().map(_.path).mkString(File.pathSeparator),
)
object test extends JavaTests with TestModule.Junit4
}
> ./mill bar.test
Test bar.HelloWorldTest.testSimple started
Test bar.HelloWorldTest.testSimple finished...
...
Javadoc Config
To generate API documenation you can use the docJar
task on the module you’d
like to create the documentation for, configured via scalaDocOptions
or
javadocOptions
:
package build
import mill._, javalib._
object foo extends JavaModule {
def javadocOptions = Seq("-quiet")
}
> ./mill show foo.docJar
> unzip -p out/foo/docJar.dest/out.jar foo/Foo.html
...
...My Awesome Docs for class Foo...
Specifying the Main Class
package build
import mill._, javalib._
object `package` extends RootModule with JavaModule {
def mainClass = Some("foo.Qux")
}
Mill’s foo.run
by default will discover which main class to run from your
compilation output, but if there is more than one or the main class comes from
some library you can explicitly specify which one to use. This also adds the
main class to your foo.jar
and foo.assembly
jars.
> ./mill run
Hello Qux
Customizing the Assembly
package build
import mill._, javalib._
import mill.javalib.Assembly._
object foo extends JavaModule {
def moduleDeps = Seq(bar)
def assemblyRules = Seq(
// all application.conf files will be concatenated into single file
Rule.Append("application.conf"),
// all *.conf files will be concatenated into single file
Rule.AppendPattern(".*\\.conf"),
// all *.temp files will be excluded from a final jar
Rule.ExcludePattern(".*\\.temp"),
// the `shapeless` package will be shaded under the `shade` package
Rule.Relocate("shapeless.**", "shade.shapless.@1")
)
}
object bar extends JavaModule {
}
When you make a runnable jar of your project with assembly
command,
you may want to exclude some files from a final jar (like signature files,
and manifest files from library jars), and merge duplicated files (for
instance reference.conf
files from library dependencies).
By default mill excludes all *.sf
, *.dsa
, *.rsa
, and
META-INF/MANIFEST.MF
files from assembly, and concatenates all
reference.conf
files. You can also define your own merge/exclude rules.
> ./mill foo.assembly
> unzip -p ./out/foo/assembly.dest/out.jar application.conf || true
Bar Application Conf
Foo Application Conf
> java -jar ./out/foo/assembly.dest/out.jar
Loaded application.conf from resources:...
...Foo Application Conf
...Bar Application Conf
Native C Code with JNI
This is an example of how use Mill to compile C code together with your Java code using JNI.
package build
import mill._, javalib._, util.Jvm
object `package` extends RootModule with JavaModule {
// Additional source folder to put C sources
def nativeSources = Task.Sources(millSourcePath / "native-src")
// Auto-generate JNI `.h` files from Java classes using Javac
def nativeHeaders = Task {
os.proc(Jvm.jdkTool("javac"), "-h", Task.dest, "-d", Task.dest.toString, allSourceFiles().map(_.path)).call()
PathRef(Task.dest)
}
// Compile C
def nativeCompiled = Task {
val cSourceFiles = nativeSources().map(_.path).flatMap(os.walk(_)).filter(_.ext == "c")
val output = "libhelloworld.so"
os.proc(
"clang", "-shared", "-fPIC",
"-I" + nativeHeaders().path, //
"-I" + sys.props("java.home") + "/include/", // global JVM header files
"-I" + sys.props("java.home") + "/include/darwin",
"-I" + sys.props("java.home") + "/include/linux",
"-o", Task.dest / output,
cSourceFiles
)
.call(stdout = os.Inherit)
PathRef(Task.dest / output)
}
def forkEnv = Map("HELLO_WORLD_BINARY" -> nativeCompiled().path.toString)
object test extends JavaTests with TestModule.Junit4{
def forkEnv = Map("HELLO_WORLD_BINARY" -> nativeCompiled().path.toString)
}
}
There are three main steps: defining the C source folder,
generating the header files using javac
, and then compiling the C code
using clang
. After that we have the libhelloworld.so
on disk ready to use,
and in this example we use an environment variable to pass the path of that
file to the application code to load it using System.load
.
The above builds expect the following project layout:
build.mill src/ foo/ HelloWorld.java native-src/ HelloWorld.c test/ src/ foo/ HelloWorldTest.java
This example is pretty minimal, but it demonstrates the core principles, and
can be extended if necessary to more elaborate use cases. The native*
tasks
can also be extracted out into a trait
for re-use if you have multiple
`JavaModule`s that need native C components
> ./mill run
Hello, World!
> ./mill test
Test foo.HelloWorldTest.testSimple started
Test foo.HelloWorldTest.testSimple finished...
...